Course No. : SWCE – 232 Sem : III

Title: Soil Mechanics Credit: 3 (2+1)

Theory :

Introduction of soil mechanics, field of soil mechanics, phase diagram physical and index properties of soil classification of soils, general classification based on particles size, textural classification and I.S. soil classification system stress condition in soils, effective and neutral stress, Permeability and seepage, Shear strength mohr stress circle, theoretical relationship between principle stress circle, theoretical relationship between principal stress mohrcoulomb failure theory, effective stress principle. Determination of shear perameters by direct shear to be circle, theoretical test. Numerical exercise based on various types of tests. Compaction composition of soils standard and modified protector test, abbot compaction and Jodhpur mini compaction text field compaction method and control. Consolidation of soil: Consolidation of soils, one dimensional consolidation spring analogy, Terzaghi's theory Laboratory consolidation text, calculation of void ratio and coefficient of volume change, Taylor's and Casagrand's method, determination of coefficient of consolidation. Earth pressure: Plastic equilibrium in soils Acti e and passive states, Rankine's theory of earth pressure active and passive earth pres ure for cohesive soils, simple numerical exercise. Stability of slopes: Introduction to stability Analysis of infinite and finite slopes friction circles method Taylor's stability number.

Practical:

Determination of water content of soil; Determination of specific gravity of soil; Determination of field density of soil by core cutter method; Determination of field density by sand replacement method; Grain size analysis by sieving (Dry sieve analysis); Grain size analysis by hydrometer method; Determination of liquid limit by Casagrande' s method; Determination of plastic limit; Determination of shrinkage limit; Determination of permeability by constant head method; Determination of permeability by variable head method; Determination of compaction properties by standard proctor test; Determination of shear parameters by Direct shear test; Determination of unconfined compressive strength of soil.

DEPARTMENT OF SOIL AND WATER CONSERVATION ENGINEERING Lesson Plan for the B.Tech.[Agril.Engg.] from 2007-08

Course No: SWCE 232 Credits: 3(2+1)

Title: Soil Mechanics Semester: III

Course : B.Tech. (Agri. Engg.)

Lecture	Topic	Book	Article No	
No		No		
1	Soil and Soil Engineering, Field of Soil Mechanics	1	1.1 to 1.3	
2	Preliminary definitions and relationships	1	2.1 to 2.5	
3	Functional relationships	1	2.6	
4	Numericals on functional relationships	1		
5	Determination of index properties	1	3.1 to 3.3	
6	Determination of index properties	1	3.4 to 3.5	
7	Sedimentation analysis and numericals	1	3.6, 3.8	
	Hydrometer method			
8	Particle size distribution curve and numericals	1	3.9	
9	Consistency of soils, determination of liquid and plastic	1	3.10, 3.11	

Lesson Plan

	limit		
10	Determination of shrinkage limit	1	3.12
11	Soil Classification	1	4.1, 4.2, 4.3, 4.5
12	Modes of occurrence of soil water, adsorbed water,	1	6.1 to 6.3
	capillary water, Numericals		
13	Stress conditions in soil: Effective and neutral pressures	1	6.4
14	Numericals on stress conditions	1	
15	Permeability, Discharge velocity, seepage velocity, factors	1	7.1 to 7.4, 7.6
	affecting seepage velocity		
16	Permeability of stratified soils and numercials	1	7.12
17	Seepage analysis, seepage pressure, upward flow	1	9.1 to 9.3
18	Laplace equation and Flow net	1	9.4 and 9.5
19, 20	Shear strength, Mohr stress circle, Theoretical relationship	1	18.1 and 18.2
	between principal stress		
21 - 23	Compaction: standard and modified proctor test, abbot		17.1, 17.2, 17.3,
	compaction and Jodhpur mini compaction test, field		17.6, 17.7 and
	compaction method and control		17.8
24 - 26	Consolidation, spring analogy, Terzaghi's theory,	1	15.1, 15.2, 15.5,
	laboratory consolidation test, calculation of void ratio and		15.7, 15.8 and
	coefficient of volume change, Taylor's and Cassagrandes		15.9
	method determination of coefficient of consolidation		
27	Earth pressure, active and passive states,	1	20.1, 20.2
28	Rankine's theory: only two cases of earth fill i.e. I) Dry or	1	20.4
	moist back fill with no surcharge II) submerged backfill		
29	Numerical on the above two cases	1	
30	Stability of slopes, stability analysis of infinite and finite	1	23.1 to 23.3
	slopes		
31, 32	Friction circle method, and Taylor's stability number	1	23.6, 23.7

PRACTICALS:

Practical	Title
No	
1	Determination of water content by different methods
2	Determination of field density by core cutter method
3	Determination of field density by sand replacement method
4	Determination of sp Gravity by Pyconometer
5	Mechanical analysis of soil by sieving
6	Determination of grain size distribution by hydrometer
7	Determination of Liquid limit of soil
8	Determination of Plastic limit of soil
9	Determination of Shrinkage limit of soil
10	Determination of hydraulic conductivity by constant head permeameter
11	Determination of hydraulic conductivity by variable head permeameter
12	Determination of compaction properties of soil by Proctor's test

TEXT BOOK:

1. Soil Mechanics and Foundations by B.C.Punmia

REFERENCE BOOKS:

- Basic and Applied Soil Mechanics by Gopal Ranjan and A.S.R
 Soil Testing for Engineers by L.W. Lambe